The Basics of P-splines

Paul Eilers

Erasmus Medical Center, Rotterdam

What are P-splines?

- A flexible tool for smoothing
- Based on regression with local basis functions: B-splines
- No efforts to optimize the basis
- Just a large number of B-splines
- And a penalty to tune smoothness
- (Software demo: PSPlay_psplines)

Plot from PSPlay_psplines program

The roots of P-splines

- Eilers and Marx: Statistical Science, 1996
- In fact not a very revolutionary proposal
- A simplification of O'Sullivan's ideas
- But the time seemed right
- Now over 1500 citations (in Web of Science)
- Many from applied areas (that's what really counts)
- I will show some theory and examples today

Discrete smoothing

- Given: data series $y_{i}, i=1, \ldots, m$
- Wanted: a smooth series z
- Two (conflicting) goals: fidelity to y and smoothness of z
- Fidelity, sum of squares: $S=\sum_{i}\left(y_{i}-z_{i}\right)^{2}$
- How to quantify smoothness?
- Use roughness instead: $R=\sum_{i}\left(z_{i}-z_{i-1}\right)^{2}$
- Simplification of Whittaker's (1923) "graduation"

Penalized least squares

- Combine fidelity and roughness

$$
Q=S+\lambda R=\sum_{i}\left(y_{i}-z_{i}\right)^{2}+\lambda \sum_{i}\left(z_{i}-z_{i-1}\right)^{2}
$$

- Parameter λ sets the balance
- Operator notation: $\Delta z_{i}=z_{i}-z_{i-1}$

$$
Q=\sum_{i}\left(y_{i}-z_{i}\right)^{2}+\lambda \sum_{i}\left(\Delta z_{i}\right)^{2}
$$

Matrix-vector notation

- Penalized least squares objective function

$$
Q=\|y-z\|^{2}+\lambda\|D z\|^{2}
$$

- Differencing matrix D, such that $D z=\Delta z$

$$
D=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

- Explicit solution: $\hat{z}=\left(I+\lambda D^{\prime} D\right)^{-1} y$

Implementation in \mathbf{R}

```
m <- length(y)
E <- diag(m)
D <- diff(E)
# Difference operator
G <- E + lambda * t(D) %*% D
z <- solve(G, y) # Solve the equations
```


Notes on computation

- Linear system of equations
- m equations in m unknowns
- Practical limit with standard algorithm: $m \approx 4000$
- Computation time proportional to m^{3}
- But the system is extremely sparse (bandwidth $=3$)
- Specialized algorithms easily handle $m>10^{6}$ (package spam)
- Computation time then linear in m
- One million observations smoothed in one second

Sparse implementation in \mathbf{R}

library (spam)
m <- length(y)
E <- diag.spam(m) \# Identity matrix
D <- diff(E) \# Difference operator
G <- E + lambda * t(D) \%*\% D
z <- solve(G, y) \# Solve the equations

Higher order penalties

- Second order differences are easily defined
- Notation: $\Delta^{2} z_{i}=\Delta\left(\Delta z_{i}\right)=\left(z_{i}-z_{i-1}\right)-\left(z_{i-1}-z_{i-2}\right)$
- Second order differencing matrix

$$
D=\left[\begin{array}{rrrrr}
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]
$$

- Higher orders are straightforward
- In R: D $=\operatorname{diff}(\operatorname{diag}(m), \operatorname{diff}=d)$

The effects of higher orders

- Smoother curves
- Polynomial limits for large λ
- Degree of interpolation
- Degree of extrapolation
- Conservation of moments (will be explained later)
- (Software demo: PSPlay_discrete)

Plot from PSPlay_discrete program

Whittaker smoothing; order $=3, \log 10(\operatorname{lambda})=4.4$

Limits

- Consider large λ in $Q=\|y-z\|^{2}+\lambda\|D z\|^{2}$
- Penalty is overwhelming, hence essentially $D z=\Delta z=0$
- This is the case if $z_{i}-z_{i-1}=0$, hence $z_{i}=c$, a constant
- Generally: $\Delta^{d} z=0$ if z is order $d-1$ polynomial in i
- Linear limit when $d=2$, quadratic when $d=3, \ldots$
- It is also the least squares polynomial
- In the limit we have essentially a parametric model

Interpolation and extrapolation

- Let y_{i} be missing for some i
- Use weights w_{i} (0 if missing, 1 if not)
- Fill in arbitrary values (say 0) for missing y
- Minimize, with $W=\operatorname{diag}(w)$

$$
Q=(y-z)^{\prime} W(y-z)+\lambda\|D z\|^{2}
$$

- Trivial changes: $\hat{z}=\left(W+\lambda D^{\prime} D\right)^{-1} W y$

Interpolation and extrapolation, continued

- Interpolation is by polynomial in i
- Order 2d - 1
- Extrapolation: introduce "missing" data at the end(s)
- Extrapolation is by polynomial in i
- Order d - 1
- (Software demo: PSPlay_interpolation)

Plot from PSPlay_interpolate program

Whittaker smoothing; order $=2, \log 10(\operatorname{lambda})=2.4$

Non-normal data

- We measured fidelity by the sum of squares of residuals
- This is reasonable for (approximately) normal data
- Which means: trend plus normal disturbances
- How will we handle counts?
- Or binomial data?
- Use penalized (log-)likelihood
- Along the lines of the generalized linear model (GLM)

Smoothing of counts

- Given: a series y of counts
- We model a smooth linear predictor η
- Assumption: $y_{i} \sim \operatorname{Pois}\left(\mu_{i}\right)$, with $\eta_{i}=\log \mu_{i}$
- The roughness penalty is the same
- But fidelity now measured by deviance (-2 LL):

$$
Q=2 \sum_{i}\left(\mu_{i}-y_{i} \eta_{i}\right)+\lambda \sum_{i}\left(\Delta^{d} \eta_{i}\right)^{2}
$$

Linearization and weighted least squares

- Derivatives of Q give penalized likelihood equations

$$
\lambda D^{\prime} D \eta=y-e^{\eta}=y-\mu
$$

- Non-linear system, but the Taylor approximation gives

$$
\left(\tilde{M}+\lambda D^{\prime} D\right) \eta=y-\tilde{\mu}+\tilde{M} \tilde{\eta}
$$

- Current approximation $\tilde{\eta}$, and $\tilde{M}=\operatorname{diag}(\tilde{\mu})$
- Repeat until (quick) convergence
- Start from $\tilde{\eta}=\log (y+1)$

Example: severe coal mining accidents in UK

A useful application: histogram smoothing

- The "Poisson smoother" is ideal for histograms
- Bins can be very narrow
- Still a smooth realistic (discretized) density estimate
- Conservation of moments
- $\sum_{i} y_{i} x_{i}^{k}=\sum_{i} \hat{\mu}_{i} x_{i}^{k}$ for integer $k<d$ (bin midpoints in x)
- With $d=3$, mean and variance don't change
- Whatever the amount of smoothing
- (Software demo: PSPlay_histogram)

Plot from PSPlay_histogram program

Histogram smoothing; order $=2, \log 10($ lambda $)=3$

Smoothing old Faithful

Pay attention to the boundaries

- Extend the histogram with enough zero counts
- But some data are inherently bounded
- Non-negative, or between 0 and 1
- Then you should limit the domain accordingly
- Otherwise you will smooth in the "no go" area
- Example: suicide treatment data
- Inherently non-negative durations of treatment spells

Smoothing the suicide treatment data

Binomial data

- Given: sample sizes s, "successes" y
- Smooth curve wanted for p, probability of succes
- We model the logit:

$$
\eta=\log \frac{p}{1-p} ; \quad p=\frac{e^{\eta}}{1+e^{\eta}}=\frac{1}{1+e^{-\eta}}
$$

- Linearization as for counts
- Start from logit of $(y+1) /(s+2)$
- No surprises, details skipped

Example: hepatitis B prevalence (Keiding)

Hepatitis B prevalence

Optimal smoothing

- We can smooth almost anything (in the GLM sense)
- How much should we smooth?
- Let the data decide
- Cross-validation, AIC (BIC)
- Essentially we measure prediction performance
- On new or left-out data

Leave-one-out cross-validation

- Leave out y_{i} (make w_{i} zero)
- Interpolate a value for it: \hat{y}_{-i}
- Do this for all observations in turn
- You get a series of "predictions" \hat{y}_{-i}
- How good are they?
- Use $C V=\sum\left(y_{i}-\hat{y}_{-i}\right)^{2}$, or $R M S C V=\sqrt{C V / m}$
- Search for λ that minimizes $C V$

Speeding up the computations

- LOO CV looks expensive (repeat smoothing m times)
- It is, if done without care
- But there is a better way
- We have $\hat{y}=\left(W+\lambda D^{\prime} D\right)^{-1} W y=H y$
- We call H the hat matrix; property: $h_{i j}=\partial \hat{y}_{i} / \partial y_{j}$
- One can prove: $y_{i}-\hat{y}_{-i}=\left(y_{i}-\hat{y}_{i}\right) /\left(1-h_{i i}\right)$
- Smooth once (for each λ), compute all \hat{y}_{-i} at the same time

Akaike's information criterion

- Definition: $A I C=$ Deviance $+2 E D=-2 L L+2 E D$
- Here $E D$ is the effective model dimension
- Useful definition:

$$
E D=\sum_{i} \partial \hat{\mu}_{i} / \partial y_{i}=\sum_{i} h_{i i}=\operatorname{tr}(H)
$$

- This defines a hat matrix for generalized linear smoothing
- Vary λ on a grid to find minimum of AIC
- Minimization routine can be used too
- But it is useful to see the curve of AIC vs. $\log \lambda$

Old Faithful again

Asymmetric penalties and monotone smoothing

- Sometimes we want a smooth increasing result
- Smoothing alone does not guarantee a monotone shape
- We need a little help
- Additional asymmetric penalty $P=\kappa \sum_{i} v_{i}\left(z_{i}-z_{i-1}\right)^{2}$
- With $v_{i}=1$ if $z_{i}<z_{i-1}$ and $v_{i}=0$ otherwise
- The penalty only works where monotonicity is violated
- With large κ we get the desired result
- This idea also works for convex smoothing

Example of monotone smoothing

Limitations of the Whittaker smoother

- The x s of the observations must be equally spaced
- Multiple y for one x need extra work
- Inefficient computation in complex models
- Solution: P-splines
- Combine Whittaker's penalty with regression on B-splines

One linear B-spline

- Two pieces, each a straight line, everything else zero
- Nicely connected at knots (t_{1} to t_{3}) same value
- Slope jumps at knots

One linear B-spline

One quadratic B-spline

- Three pieces, each a quadratic segment, rest zero
- Nicely connected at knots (t_{1} to t_{4}): same values and slopes
- Shape similar to Gaussian

One cubic B-spline

- Four pieces, each a cubic segment, rest zero
- At knots $\left(t_{1}\right.$ to $\left.t_{5}\right)$: same values, first \& second derivatives
- Shape more similar to Gaussian

Sets of linear and cubic B-splines

B-spline basis

- Basis matrix B
- Columns are B-splines

$$
\left[\begin{array}{lllll}
B_{1}\left(x_{1}\right) & B_{2}\left(x_{1}\right) & B_{3}\left(x_{1}\right) & \ldots & B_{n}\left(x_{1}\right) \\
B_{1}\left(x_{2}\right) & B_{2}\left(x_{2}\right) & B_{3}\left(x_{2}\right) & \ldots & B_{n}\left(x_{2}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
B_{1}\left(x_{m}\right) & B_{2}\left(x_{m}\right) & B_{3}\left(x_{m}\right) & \ldots & B_{n}\left(x_{m}\right)
\end{array}\right]
$$

- In each row only a few non-zero elements (degree plus one)
- Only a few basis functions contribute to $\mu_{i}=\sum b_{i j} \alpha_{j}=B_{i \bullet}^{\prime} \alpha$
- (Software demo: PSPlay_bsplines)

Plot from PSPlay_bsplines program

B-spline basis, $\mathrm{n}=16$, degree $=3$

B-splines fit to motorcycle data

P-splines on one slide

- Do regression on (cubic) B-splines
- Use equally spaced knots
- Take a large number of them $(10,20,50)$
- Put a difference penalty (order 2 or 3) on the coefficients
- Tune smoothness with λ (penalty weight)
- Don't try to optimize the number of B-splines
- Relatively small system of equations (10, 20, 50)
- Arbitrary distribution of x allowed

Technical details of P-splines

- Minimize (with basis B)

$$
Q=\|y-B \alpha\|^{2}+\lambda\|D \alpha\|^{2}
$$

- Explicit solution:

$$
\hat{\alpha}=\left(B^{\prime} B+\lambda D^{\prime} D\right)^{-1} B^{\prime} y
$$

- Hat matrix $H=\left(B^{\prime} B+\lambda D^{\prime} D\right)^{-1} B^{\prime}$
- For a nice curve, compute B^{*} on nice grid x^{*}
- Plot $B^{*} \hat{\alpha}$ vs x^{*}

Properties of P-splines

- Penalty $\sum_{j}\left(\Delta^{d} \alpha_{j}\right)^{2}$
- Limit for strong smoothing is a polynomial of degree $d-1$
- Interpolation: polynomial of degree $2 d$ - 1
- Extrapolation: polynomial of degree $d-1$
- Conservation of moments of degree up to d - 1
- Many more B-splines then observations are allowed
- The penalty does the work!
- (Software demo: PSPlay_psplines)

Cross-validation

- The same idea as for Whittaker smoother
- Leave out each observation in turn and predict it: \hat{y}_{-i}
- Compute how close they are to observations:

$$
C V=\sum_{i}\left(y_{i}-\hat{y}_{-i}\right)^{2}=\sum_{i} r_{-i}^{2}
$$

- Speedy computation with hat matrix: $H=B\left(B^{\prime} B+\lambda D^{\prime} D\right)^{-1} B^{\prime}$
- $r_{-i}=y_{i}-y_{-i}=\left(y_{i}-\hat{y}_{i}\right) /\left(1-h_{i i}\right)$

Motorcycle helmet data

Generalized linear smoothing

- It is just like a GLM (generalized linear model)
- With the penalty sneaked in
- Poisson example for counts y
- Linear predictor $\eta=B \alpha$, expectations $\mu=e^{\eta}$
- Assumption $y_{i} \sim \operatorname{Pois}\left(\mu_{i}\right)$ (independent)
- From penalized Poisson log-likelihood follows iteration with

$$
\left(B^{\prime} \tilde{M} B+\lambda D^{\prime} D\right) \alpha=B^{\prime}(y-\tilde{\mu}+\tilde{M} B \tilde{\alpha})
$$

- Here $M=\operatorname{diag}(\mu)$

Generalized additive models

- One-dimensional smooth model: $\eta=f(x)$
- Two-dimensional smooth model: $\eta=f\left(x_{1}, x_{2}\right)$
- General f : any interaction between x_{1} and x_{2} allowed
- We want to avoid two-dimensional smoothing
- Generalized additive model: $\eta=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)$
- Both f_{1} and f_{2} smooth (Hastie and Tibshirani, 1990)
- Higher dimensions straightforward

The old way: backfitting for GAM

- Assume linear model: $E(y)=\mu=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)$
- Assume: approximations $\tilde{f_{1}}$ and $\tilde{f_{2}}$ available
- Compute partial residuals $r_{1}=y-\tilde{f_{2}}\left(x_{2}\right)$
- Smooth scatterplot of $\left(x_{1}, r_{1}\right)$ to get better $\tilde{f_{1}}$
- Compute partial residuals $r_{2}=y-\tilde{f_{1}}\left(x_{1}\right)$
- Smooth scatterplot of $\left(x_{2}, r_{2}\right)$ to get better $\tilde{f_{2}}$
- Repeat to convergence

More on backfitting

- Start with $\tilde{f_{1}}=0$ and $\tilde{f_{2}}=0$
- Generalized residuals and weights for non-normal data:
- Any smoother can be used
- Convergence can be proved, but may take many iterations
- Convergence criteria should be strict

PGAM: GAM with P-splines

- Use B-splines: $\eta=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)=B_{1} \alpha_{1}+B_{2} \alpha_{2}$
- Combine B_{1} and B_{2} to matrix, α_{1} and α_{2} to vector:

$$
\eta=\left[B_{1}: B_{2}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=B^{*} \alpha^{*}
$$

- Difference penalties on α_{1}, α_{2}, in block-diagonal matrix
- Penalized GLM as before: no backfitting

P-GAM fitting (GLM setting)

- Maximize

$$
l^{*}=l(\alpha ; B, y)-\frac{1}{2} \lambda_{1}\left\|D_{1} \alpha_{1}\right\|^{2}-\frac{1}{2} \lambda_{2}\left\|D_{2} \alpha_{2}\right\|^{2}
$$

- Iterative solution:

$$
\hat{\alpha}_{t+1}=\left(B^{\prime} \hat{W}_{t} B+P\right)^{-1} B^{\prime}\left(y-\tilde{\mu}+\hat{W}_{t} \hat{\eta}_{t}^{\star}\right)
$$

where

$$
P=\left[\begin{array}{cc}
\lambda_{1} D_{1}^{\prime} D_{1} & 0 \\
0 & \lambda_{2} D_{2}^{\prime} D_{2}
\end{array}\right]
$$

The ethanol data

- Nitrogen oxides in motor exhaust: $\mathrm{NO}_{\mathrm{x}}(z)$
- Compression ratio, $\mathrm{C}(x)$, equivalence ratio, E (y)

PGAM fit for ethanol data

PGAM components for ethanol data

Wrap-up

- P-splines are useful
- Based on regression, very flexible
- The penalty is the key
- Computation is relatively easy and efficient
- Eilers, PHC and Marx, BD (1996) Flexible smoothing with B-splines and penalties (with Discussion). Statistical Science 11, 89-121.
- Eilers, PHC; Marx, BD and Durbán, M (2015) Twenty years of P-splines. SORT 39, 149-186.

