The Basics of P-splines

Paul Eilers

Erasmus Medical Center, Rotterdam

Piracicaba 2019, April 2019



What are P-splines?

o A flexible tool for smoothing

e Based on regression with local basis functions: B-splines
e No efforts to optimize the basis

e Just a large number of B-splines

e And a penalty to tune smoothness

e (Software demo: PSPlay_psplines)
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Plot from PSPlay_psplines program

P-splines, n = 20, order = 2, degree = 3, logl0(lambda) = 1
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The roots of P-splines

e Filers and Marx: Statistical Science, 1996

e In fact not a very revolutionary proposal

e A simplification of O’Sullivan’s ideas

e But the time seemed right

e Now over 1500 citations (in Web of Science)

e Many from applied areas (that’s what really counts)

e [ will show some theory and examples today
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Discrete smoothing

e Given: data series y;,1=1,...,m

e Wanted: a smooth series z

e Two (conflicting) goals: fidelity to y and smoothness of z
e Fidelity, sum of squares: S = ) ;(y; — z)*

e How to quantify smoothness?

e Use roughness instead: R = Y (z; — z;_1)*

e Simplification of Whittaker’s (1923) “graduation”
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Penalized least squares
e Combine fidelity and roughness

QO=S5+AR = Z —zl)2+)\Z —2;1)>?

e Parameter A sets the balance

e Operator notation: Az; = z; — z;_4

Q= Z(yi —z) + A Z(Az»z
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Matrix-vector notation

e Penalized least squares objective function

Q = lly — zI* + AlIDz||*

e Differencing matrix D, such that Dz = Az

-1 1 0 0
D=| 0 -1 1 0
0 0 -11

e Explicit solution: 2 = (I + )\D’D)_ly
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Implementation in R

<- length(y)
<- diag(m) # Identity matrix
<- diff(E) # Difference operator

<- E + lambda * t(D) %*% D
<- solve(G, y) # Solve the equations

N @O O 0 B
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Notes on computation

e Linear system of equations

e m equations in m unknowns

e Practical limit with standard algorithm: m ~ 4000
e Computation time proportional to m’

e But the system is extremely sparse (bandwidth = 3)

e Specialized algorithms easily handle m > 10° (package spam)
e Computation time then linear in m

e One million observations smoothed in one second
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Sparse implementation in R

library(spam)

m <- length(y)

E <- diag.spam(m) # Identity matrix
D <- diff(E) # Difference operator

G <- E + lambda * t(D) %*% D

z <- solve(G, y) # Solve the equations
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Higher order penalties

e Second order differences are easily defined
e Notation: A’z; = A(Az) = (zi — zi1) — (zi21 — zip)

e Second order differencing matrix

1 -2 1 0 0|
D=0 1 -2 1 0
0 0 1 -2 1

e Higher orders are straightforward

e InR:D = diff(diag(m), diff = d)
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The effects of higher orders

e Smoother curves

e Polynomial limits for large A

e Degree of interpolation

e Degree of extrapolation

e Conservation of moments (will be explained later)

e (Software demo: PSPlay_discrete)
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Plot from PSPlay_discrete program

Whittaker smoothing; order = 3, log10(lambda) = 4.4
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Limits

e Consider large A in Q = ||y — z|]* + A|Dz|?

e Penalty is overwhelming, hence essentially Dz = Az = 0
e This is the case if z; — z;_1 = 0, hence z; = ¢, a constant

e Generally: A%z = 0if z is order d — 1 polynomial in i

e Linear limit when d = 2, quadratic whend =3, ...

e It is also the least squares polynomial

e In the limit we have essentially a parametric model

Piracicaba 2019, April 2019 13



Interpolation and extrapolation

e Let y; be missing for some i

e Use weights w; (0 if missing, 1 if not)

e Fill in arbitrary values (say 0) for missing y
e Minimize, with W = diag(w)

Q= (y—2W(y - 2) + AlDz|l’

e Trivial changes: 2 = (W + AD’D)"'Wy
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Interpolation and extrapolation, continued

e Interpolation is by polynomial in i

e Order 2d -1

e Extrapolation: introduce “missing” data at the end(s)
e Extrapolation is by polynomial in 7

e Orderd -1

e (Software demo: PSPlay_interpolation)
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Plot from PSPlay_interpolate program

Whittaker smoothing; order = 2, log10(lambda) = 2.4
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Non-normal data

e We measured fidelity by the sum of squares of residuals
e This is reasonable for (approximately) normal data

e Which means: trend plus normal disturbances

e How will we handle counts?

e Or binomial data?

e Use penalized (log-)likelihood

e Along the lines of the generalized linear model (GLM)
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Smoothing of counts

e Given: a series y of counts
e We model a smooth linear predictor 1
e Assumption: y; ~ Pois(u;), with n; = log u;

e The roughness penalty is the same

e But fidelity now measured by deviance (-2 LL):

Q=2 Z(ui —yim) + A Z(Adm)z
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Linearization and weighted least squares

e Derivatives of Q give penalized likelihood equations
AD'Dn=y—-el=y—u
e Non-linear system, but the Taylor approximation gives
(M + AD'D)n =y — i + M7

e Current approximation 7], and M = diag(fi)
e Repeat until (quick) convergence

e Start from 7] = log(y + 1)
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Example: severe coal mining accidents in UK

Mining disasters; order = 2, log1l0(lambda) =1
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A useful application: histogram smoothing

e The “Poisson smoother” is ideal for histograms

e Bins can be very narrow

e Still a smooth realistic (discretized) density estimate
e Conservation of moments

© ) yixi.‘ =) ‘aixi.‘ for integer k < d (bin midpoints in x)
e With d = 3, mean and variance don’t change

e Whatever the amount of smoothing

e (Software demo: PSPlay_histogram)
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Plot from PSPlay_histogram program

Histogram smoothing; order = 2, log10(lambda) = 3
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AIC
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Pay attention to the boundaries

e Extend the histogram with enough zero counts
e But some data are inherently bounded

e Non-negative, or between 0 and 1

e Then you should limit the domain accordingly
e Otherwise you will smooth in the “no go” area
e Example: suicide treatment data

e Inherently non-negative durations of treatment spells
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Smoothing the suicide treatment data
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Binomial data

e Given: sample sizes s, “successes” y
e Smooth curve wanted for p, probability of succes

e We model the logit:

e Linearization as for counts
e Start from logit of (y + 1)/(s + 2)

e No surprises, details skipped
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Example: hepatitis B prevalence (Keiding)

Hepatitis B prevalence
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Optimal smoothing

e We can smooth almost anything (in the GLM sense)
e How much should we smooth?

e Let the data decide

e (Cross-validation, AIC (BIC)

e Essentially we measure prediction performance

e On new or left-out data
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Leave-one-out cross-validation

e Leave out y; (make w; zero)

e Interpolate a value for it: §_;

e Do this for all observations in turn

e You get a series of “predictions” 7/_;

e How good are they?

e Use CV = Y.(y; — §-;)%, or RMSCV = +/CV/m

e Search for A that minimizes CV

Piracicaba 2019, April 2019

29



Speeding up the computations

e LOO CV looks expensive (repeat smoothing m times)
e [tis, if done without care

e But there is a better way

e We have ) = (W + AD’D) 'Wy = Hy

e We call H the hat matrix; property: h;; = d7;/dy;

e One can prove: y; — -, = (y;i — 7;)/ (1 = hy)

e Smooth once (for each A), compute all j_; at the same time
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Akaike’s information criterion

e Definition: AIC = Deviance + 2ED = -2LL + 2ED
e Here ED is the effective model dimension

e Useful definition:

ED = Z &"al/ayz = Z hii = tI‘(H)

e This defines a hat matrix for generalized linear smoothing
e Vary A on a grid to find minimum of AIC
e Minimization routine can be used too

e But it is useful to see the curve of AIC vs. log A
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Asymmetric penalties and monotone smoothing

e Sometimes we want a smooth increasing result

e Smoothing alone does not guarantee a monotone shape
e We need a little help

o Additional asymmetric penalty P = « } ; vi(z; — Zi_1)?

e Withv; =1 if z; < z;_; and v; = 0 otherwise

e The penalty only works where monotonicity is violated
e With large x we get the desired result

e This idea also works for convex smoothing
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Example of monotone smoothing

Monotone fit of Hepatitis B data, lambda =1, kappa = 1e6
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Limitations of the Whittaker smoother

e The xs of the observations must be equally spaced
e Multiple y for one x need extra work

e Inefficient computation in complex models

e Solution: P-splines

e Combine Whittaker’s penalty with regression on B-splines
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One linear B-spline

e Two pieces, each a straight line, everything else zero
e Nicely connected at knots (#; to t3) same value

e Slope jumps at knots

One linear B-spline
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One quadratic B-spline

e Three pieces, each a quadratic segment, rest zero
e Nicely connected at knots (#; to t4): same values and slopes

e Shape similar to Gaussian

One quadratic B-spline (and shifted segments)
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One cubic B-spline

e Four pieces, each a cubic segment, rest zero
e At knots (t1 to t5): same values, first & second derivatives

e Shape more similar to Gaussian

One cubic B-spline (and shifted segments)
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Sets of linear and cubic B-splines

Linear B—splines
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B-spline basis

e Basis matrix B

e Columns are B-splines

| Bi(x1) Ba(x1) Ba(x1) ... Bu(x1)
Bi(x2) Ba(x2) Bs(x2) ... Bu(x2)

 Bi(w) Baltw) Bs(n) ... BuCtm)

e In each row only a few non-zero elements (degree plus one)
e Only a few basis functions contribute to u; = }. bjje; = B«

e (Software demo: PSPlay_bsplines)
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Plot from PSPlay_bsplines program

B-spline basis, n = 16, degree = 3
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B-splines fit to motorcycle data

Motor cycle helmet impact (25 B-splines)
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P-splines on one slide

e Do regression on (cubic) B-splines

e Use equally spaced knots

e Take a large number of them (10, 20, 50)

e Put a difference penalty (order 2 or 3) on the coefficients
e Tune smoothness with A (penalty weight)

e Don'’t try to optimize the number of B-splines

e Relatively small system of equations (10, 20, 50)

e Arbitrary distribution of x allowed
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Technical details of P-splines

e Minimize (with basis B)

Q = lly = Ball* + Al[Dall?

e Explicit solution:

& = (B'B+ AD'D)"'B’y

e Hat matrix H = (B'B + AD’D)™'B’
e For a nice curve, compute B* on nice grid x*

e Plot B*A vs x*
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Properties of P-splines

e Penalty ). j(Adocj)2

e Limit for strong smoothing is a polynomial of degree d — 1
e Interpolation: polynomial of degree 2d — 1

e Extrapolation: polynomial of degree d — 1

e Conservation of moments of degree up tod — 1

e Many more B-splines then observations are allowed

e The penalty does the work!

e (Software demo: PSPlay_psplines)
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Cross-validation

e The same idea as for Whittaker smoother
e [eave out each observation in turn and predict it: §/_;

e Compute how close they are to observations:

CV = Z(yi —9.)° = Z r

1
e Speedy computation with hat matrix: H = B(B'B+AD’D)"'B’

o r_i=Yi—Yy-i= (i~ 9)/(1 - hy)
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Motorcycle helmet data

lambda = 0.001; CV = 29.2; ED = 47. lambda = 0.01; CV = 26.8; ED = 41.:
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Generalized linear smoothing

o Itisjustlike a GLM (generalized linear model)

e With the penalty sneaked in

e Poisson example for counts y

e Linear predictor n = Ba, expectations u = ¢

e Assumption y; ~ Pois(u;) (independent)

e From penalized Poisson log-likelihood follows iteration with

(BPMB + AD'D)a = B'(y — {i + MB@)
e Here M = diag(u)
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Generalized additive models

e One-dimensional smooth model: n = f(x)

e Two-dimensional smooth model: 1 = f(x1, x2)

e General f: any interaction between x; and x, allowed
e We want to avoid two-dimensional smoothing

e Generalized additive model: n = f1(x1) + f2(x2)

e Both f; and f, smooth (Hastie and Tibshirani, 1990)

e Higher dimensions straightforward
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The old way: backfitting for GAM

e Assume linear model: E(y) = u = f1(x1) + fa(x2)
e Assume: approximations f; and f, available

e Compute partial residuals 71 = y — f2(x2)

e Smooth scatterplot of (xj,71) to get better ﬂ

e Compute partial residuals r, = y — f1(x1)

e Smooth scatterplot of (x,, 72) to get better f;

e Repeat to convergence
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More on backfitting

e Start with f{ =0and f, = 0

e Generalized residuals and weights for non-normal data:

e Any smoother can be used

e Convergence can be proved, but may take many iterations

e Convergence criteria should be strict
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PGAM: GAM with P-splines

e Use B-splines: n = fl(xl) + f2(X2) = Bia1 + Brar
e Combine B; and B, to matrix, a1 and «a» to vector:

X1

] = B'a”
0%

77=[BliBz][

e Difference penalties on a4, ay, in block-diagonal matrix

e Penalized GLM as before: no backfitting
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P-GAM fitting (GLM setting)

e Maximize

% 1 1
I'=Il(a;B,y) - E)MHD]LOHH2 - E/\2||132062||2

e [terative solution:
dtv1 = (BWiB + P)'B'(y — i + Winy})
where

[aDDr 0

F 0  ADD,
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The ethanol data

e Nitrogen oxides in motor exhaust: NOy (z)

e Compression ratio, C (x), equivalence ratio, E (y)
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PGAM fit for ethanol data
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PGAM components for ethanol data
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Wrap-up

e P-splines are useful

e Based on regression, very flexible

e The penalty is the key

e Computation is relatively easy and efficient

e Eilers, PHC and Marx, BD (1996) Flexible smoothing with
B-splines and penalties (with Discussion). Statistical Science
11, 89-121.

e Eilers, PHC; Marx, BD and Durbéan, M (2015) Twenty years
of P-splines. SORT 39, 149-186.
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