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What are P-splines?

• A flexible tool for smoothing

• Based on regression with local basis functions: B-splines

• No efforts to optimize the basis

• Just a large number of B-splines

• And a penalty to tune smoothness

• (Software demo: PSPlay psplines)
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Plot from PSPlay psplines program
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The roots of P-splines

• Eilers and Marx: Statistical Science, 1996

• In fact not a very revolutionary proposal

• A simplification of O’Sullivan’s ideas

• But the time seemed right

• Now over 1500 citations (in Web of Science)

• Many from applied areas (that’s what really counts)

• I will show some theory and examples today
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Discrete smoothing

• Given: data series yi, i = 1, . . . ,m

• Wanted: a smooth series z

• Two (conflicting) goals: fidelity to y and smoothness of z

• Fidelity, sum of squares: S =
∑

i(yi − zi)2

• How to quantify smoothness?

• Use roughness instead: R =
∑

i(zi − zi−1)2

• Simplification of Whittaker’s (1923) “graduation”
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Penalized least squares

• Combine fidelity and roughness

Q = S + λR =
∑

i

(yi − zi)2 + λ
∑

i

(zi − zi−1)2

• Parameter λ sets the balance

• Operator notation: ∆zi = zi − zi−1

Q =
∑

i

(yi − zi)2 + λ
∑

i

(∆zi)2
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Matrix-vector notation

• Penalized least squares objective function

Q = ||y − z||2 + λ||Dz||2

• Differencing matrix D, such that Dz = ∆z

D =


−1 1 0 0

0 −1 1 0
0 0 −1 1


• Explicit solution: ẑ = (I + λD′D)−1y
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Implementation in R

m <- length(y)

E <- diag(m) # Identity matrix

D <- diff(E) # Difference operator

G <- E + lambda * t(D) %*% D

z <- solve(G, y) # Solve the equations
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Notes on computation

• Linear system of equations

• m equations in m unknowns

• Practical limit with standard algorithm: m ≈ 4000

• Computation time proportional to m3

• But the system is extremely sparse (bandwidth = 3)

• Specialized algorithms easily handle m > 106 (package spam)

• Computation time then linear in m

• One million observations smoothed in one second
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Sparse implementation in R

library(spam)

m <- length(y)

E <- diag.spam(m) # Identity matrix

D <- diff(E) # Difference operator

G <- E + lambda * t(D) %*% D

z <- solve(G, y) # Solve the equations
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Higher order penalties

• Second order differences are easily defined

• Notation: ∆2zi = ∆(∆zi) = (zi − zi−1) − (zi−1 − zi−2)

• Second order differencing matrix

D =


1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1


• Higher orders are straightforward

• In R: D = diff(diag(m), diff = d)
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The effects of higher orders

• Smoother curves

• Polynomial limits for large λ

• Degree of interpolation

• Degree of extrapolation

• Conservation of moments (will be explained later)

• (Software demo: PSPlay discrete)
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Plot from PSPlay discrete program
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Limits

• Consider large λ in Q = ||y − z||2 + λ||Dz||2

• Penalty is overwhelming, hence essentially Dz = ∆z = 0

• This is the case if zi − zi−1 = 0, hence zi = c, a constant

• Generally: ∆dz = 0 if z is order d − 1 polynomial in i

• Linear limit when d = 2, quadratic when d = 3, ...

• It is also the least squares polynomial

• In the limit we have essentially a parametric model
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Interpolation and extrapolation

• Let yi be missing for some i

• Use weights wi (0 if missing, 1 if not)

• Fill in arbitrary values (say 0) for missing y

• Minimize, with W = diag(w)

Q = (y − z)′W(y − z) + λ||Dz||2

• Trivial changes: ẑ = (W + λD′D)−1Wy
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Interpolation and extrapolation, continued

• Interpolation is by polynomial in i

• Order 2d − 1

• Extrapolation: introduce “missing” data at the end(s)

• Extrapolation is by polynomial in i

• Order d − 1

• (Software demo: PSPlay interpolation)
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Plot from PSPlay interpolate program
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Non-normal data

• We measured fidelity by the sum of squares of residuals

• This is reasonable for (approximately) normal data

• Which means: trend plus normal disturbances

• How will we handle counts?

• Or binomial data?

• Use penalized (log-)likelihood

• Along the lines of the generalized linear model (GLM)
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Smoothing of counts

• Given: a series y of counts

• We model a smooth linear predictor η

• Assumption: yi ∼ Pois(µi), with ηi = logµi

• The roughness penalty is the same

• But fidelity now measured by deviance (-2 LL):

Q = 2
∑

i

(µi − yiηi) + λ
∑

i

(∆dηi)2
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Linearization and weighted least squares

• Derivatives of Q give penalized likelihood equations

λD′Dη = y − eη = y − µ

• Non-linear system, but the Taylor approximation gives

(M̃ + λD′D)η = y − µ̃ + M̃η̃

• Current approximation η̃, and M̃ = diag(µ̃)

• Repeat until (quick) convergence

• Start from η̃ = log(y + 1)
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Example: severe coal mining accidents in UK
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A useful application: histogram smoothing

• The “Poisson smoother” is ideal for histograms

• Bins can be very narrow

• Still a smooth realistic (discretized) density estimate

• Conservation of moments

•
∑

i yixk
i =
∑

i µ̂ixk
i for integer k < d (bin midpoints in x)

• With d = 3, mean and variance don’t change

• Whatever the amount of smoothing

• (Software demo: PSPlay histogram)
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Plot from PSPlay histogram program
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Smoothing old Faithful
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Pay attention to the boundaries

• Extend the histogram with enough zero counts

• But some data are inherently bounded

• Non-negative, or between 0 and 1

• Then you should limit the domain accordingly

• Otherwise you will smooth in the “no go” area

• Example: suicide treatment data

• Inherently non-negative durations of treatment spells
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Smoothing the suicide treatment data
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Binomial data

• Given: sample sizes s, “successes” y

• Smooth curve wanted for p, probability of succes

• We model the logit:

η = log
p

1 − p
; p =

eη

1 + eη
=

1
1 + e−η

• Linearization as for counts

• Start from logit of (y + 1)/(s + 2)

• No surprises, details skipped
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Example: hepatitis B prevalence (Keiding)
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Optimal smoothing

• We can smooth almost anything (in the GLM sense)

• How much should we smooth?

• Let the data decide

• Cross-validation, AIC (BIC)

• Essentially we measure prediction performance

• On new or left-out data
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Leave-one-out cross-validation

• Leave out yi (make wi zero)

• Interpolate a value for it: ŷ−i

• Do this for all observations in turn

• You get a series of “predictions” ŷ−i

• How good are they?

• Use CV =
∑

(yi − ŷ−i)2, or RMSCV =
√

CV/m

• Search for λ that minimizes CV
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Speeding up the computations

• LOO CV looks expensive (repeat smoothing m times)

• It is, if done without care

• But there is a better way

• We have ŷ = (W + λD′D)−1Wy = Hy

• We call H the hat matrix; property: hi j = ∂ŷi/∂y j

• One can prove: yi − ŷ−i = (yi − ŷi)/(1 − hii)

• Smooth once (for each λ), compute all ŷ−i at the same time
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Akaike’s information criterion

• Definition: AIC = Deviance + 2ED = −2LL + 2ED

• Here ED is the effective model dimension

• Useful definition:

ED =
∑

i

∂µ̂i/∂yi =
∑

i

hii = tr(H)

• This defines a hat matrix for generalized linear smoothing

• Vary λ on a grid to find minimum of AIC

• Minimization routine can be used too

• But it is useful to see the curve of AIC vs. logλ
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Old Faithful again
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Asymmetric penalties and monotone smoothing

• Sometimes we want a smooth increasing result

• Smoothing alone does not guarantee a monotone shape

• We need a little help

• Additional asymmetric penalty P = κ
∑

i vi(zi − zi−1)2

• With vi = 1 if zi < zi−1 and vi = 0 otherwise

• The penalty only works where monotonicity is violated

• With large κ we get the desired result

• This idea also works for convex smoothing
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Example of monotone smoothing
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Limitations of the Whittaker smoother

• The xs of the observations must be equally spaced

• Multiple y for one x need extra work

• Inefficient computation in complex models

• Solution: P-splines

• Combine Whittaker’s penalty with regression on B-splines
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One linear B-spline

• Two pieces, each a straight line, everything else zero

• Nicely connected at knots (t1 to t3) same value

• Slope jumps at knots
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One quadratic B-spline

• Three pieces, each a quadratic segment, rest zero

• Nicely connected at knots (t1 to t4): same values and slopes

• Shape similar to Gaussian
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One cubic B-spline

• Four pieces, each a cubic segment, rest zero

• At knots (t1 to t5): same values, first & second derivatives

• Shape more similar to Gaussian
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Sets of linear and cubic B-splines
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B-spline basis

• Basis matrix B

• Columns are B-splines
B1(x1) B2(x1) B3(x1) . . . Bn(x1)
B1(x2) B2(x2) B3(x2) . . . Bn(x2)
... ... ... ... ...
B1(xm) B2(xm) B3(xm) . . . Bn(xm)


• In each row only a few non-zero elements (degree plus one)

• Only a few basis functions contribute to µi =
∑

bi jα j = B′i•α

• (Software demo: PSPlay bsplines)
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Plot from PSPlay bsplines program
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B-splines fit to motorcycle data
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P-splines on one slide

• Do regression on (cubic) B-splines

• Use equally spaced knots

• Take a large number of them (10, 20, 50)

• Put a difference penalty (order 2 or 3) on the coefficients

• Tune smoothness with λ (penalty weight)

• Don’t try to optimize the number of B-splines

• Relatively small system of equations (10, 20, 50)

• Arbitrary distribution of x allowed
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Technical details of P-splines

• Minimize (with basis B)

Q = ||y − Bα||2 + λ||Dα||2

• Explicit solution:

α̂ = (B′B + λD′D)−1B′y

• Hat matrix H = (B′B + λD′D)−1B′

• For a nice curve, compute B∗ on nice grid x∗

• Plot B∗α̂ vs x∗
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Properties of P-splines

• Penalty
∑

j(∆dα j)2

• Limit for strong smoothing is a polynomial of degree d − 1

• Interpolation: polynomial of degree 2d − 1

• Extrapolation: polynomial of degree d − 1

• Conservation of moments of degree up to d − 1

• Many more B-splines then observations are allowed

• The penalty does the work!

• (Software demo: PSPlay psplines)
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Cross-validation

• The same idea as for Whittaker smoother

• Leave out each observation in turn and predict it: ŷ−i

• Compute how close they are to observations:

CV =
∑

i

(yi − ŷ−i)2 =
∑

i

r2
−i

• Speedy computation with hat matrix: H = B(B′B+λD′D)−1B′

• r−i = yi − y−i = (yi − ŷi)/(1 − hii)
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Motorcycle helmet data
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Generalized linear smoothing

• It is just like a GLM (generalized linear model)

• With the penalty sneaked in

• Poisson example for counts y

• Linear predictor η = Bα, expectations µ = eη

• Assumption yi ∼ Pois(µi) (independent)

• From penalized Poisson log-likelihood follows iteration with

(B′M̃B + λD′D)α = B′(y − µ̃ + M̃Bα̃)

• Here M = diag(µ)
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Generalized additive models

• One-dimensional smooth model: η = f (x)

• Two-dimensional smooth model: η = f (x1, x2)

• General f : any interaction between x1 and x2 allowed

• We want to avoid two-dimensional smoothing

• Generalized additive model: η = f1(x1) + f2(x2)

• Both f1 and f2 smooth (Hastie and Tibshirani, 1990)

• Higher dimensions straightforward
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The old way: backfitting for GAM

• Assume linear model: E(y) = µ = f1(x1) + f2(x2)

• Assume: approximations f̃1 and f̃2 available

• Compute partial residuals r1 = y − f̃2(x2)

• Smooth scatterplot of (x1, r1) to get better f̃1

• Compute partial residuals r2 = y − f̃1(x1)

• Smooth scatterplot of (x2, r2) to get better f̃2

• Repeat to convergence
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More on backfitting

• Start with f̃1 = 0 and f̃2 = 0

• Generalized residuals and weights for non-normal data:

• Any smoother can be used

• Convergence can be proved, but may take many iterations

• Convergence criteria should be strict

Piracicaba 2019, April 2019 51



PGAM: GAM with P-splines

• Use B-splines: η = f1(x1) + f2(x2) = B1α1 + B2α2

• Combine B1 and B2 to matrix, α1 and α2 to vector:

η = [B1 : B2]
[
α1

α2

]
= B∗α∗

• Difference penalties on α1, α2, in block-diagonal matrix

• Penalized GLM as before: no backfitting
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P-GAM fitting (GLM setting)

• Maximize

l∗ = l(α; B, y) −
1
2
λ1||D1α1||

2
−

1
2
λ2||D2α2||

2

• Iterative solution:

α̂t+1 = (B′ŴtB + P)−1B′(y − µ̃ + Ŵtη̂
?
t )

where

P =

[
λ1D′1D1 0

0 λ2D′2D2

]

Piracicaba 2019, April 2019 53



The ethanol data

• Nitrogen oxides in motor exhaust: NOx (z)

• Compression ratio, C (x), equivalence ratio, E (y)
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PGAM fit for ethanol data
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PGAM components for ethanol data
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Wrap-up

• P-splines are useful

• Based on regression, very flexible

• The penalty is the key

• Computation is relatively easy and efficient

• Eilers, PHC and Marx, BD (1996) Flexible smoothing with
B-splines and penalties (with Discussion). Statistical Science
11, 89–121.

• Eilers, PHC; Marx, BD and Durbán, M (2015) Twenty years
of P-splines. SORT 39, 149–186.
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