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What are P-splines?

• A flexible tool for smoothing

• Based on regression

• Local basis functions: B-splines

• No efforts to optimize the basis

• Just a large bunch of B-splines

• And a penalty to tune smoothness

• (Software demo: PSPlay psplines)
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Plot from PSPlay psplines program
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P−splines, n = 20, order = 2, degree = 3, log10(lambda) = 1
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The roots of P-splines

• Eilers and Marx: Statistical Science, 1996

• In fact not a very revolutionary proposal

• A simplification of O’Sullivan’s ideas

• But the time seemed right

• Now almost 1000 citations

• Many from applied areas (what really counts for us)

• E&M evangelized heavily

• A variety of applications, many in this course
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The plan of the course

• We start with penalties

• They are the core ingredient

• Splines come later

• They just “add the flesh to the skeleton”

• Basic (generalized) linear smoothing

• Extensions: generalized additive models, 2-D smoothing

• Bayesian and mixed model interpretations

• Specialized penalties
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Part 1

The power of penalties
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Discrete smoothing

• Given: data series yi, i = 1, . . . ,m

• Wanted: a smooth series z

• Two (conflicting) goals: fidelity to y and smoothness

• Fidelity, sum of squares: S =
∑

i(yi − zi)2

• How to quantify smoothness?

• Use roughness instead: R =
∑

i(zi − zi−1)2

• Simplification of Whittaker’s (1923) “graduation”
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Penalized least squares

• Combine fidelity and roughness

Q = S + λR =
∑

i

(yi − zi)2 + λ
∑

i

(zi − zi−1)2

• Parameter λ sets the balance

• Operator notation: ∆zi = zi − zi−1

Q =
∑

i

(yi − zi)2 + λ
∑

i

(∆zi)2
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Matrix-vector notation

• Penalized least squares objective function

Q = ||y − z||2 + λ||Dz||2

• Differencing matrix D, such that Dz = ∆z

D =




−1 1 0 0
0 −1 1 0
0 0 −1 1




• Explicit solution: ẑ = (I + λD′D)−1y
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Implementation in R

m <- length(y)

E <- diag(m) # Identity matrix

D <- diff(E) # Difference operator

G <- E + lambda * t(D) %*% D

z <- solve(G, y) # Solve the equations
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Notes on computation

• Linear system of equations

• m equations in m unknowns

• Practical limit with standard algorithm: m ≈ 4000

• System is extremely sparse (bandwidth = 3)

• Specialized algorithms easily handle m > 106

• Computation time then linear in m
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Higher order penalties

• Higher order differences are easily defined

• Second order: ∆2zi = ∆(∆zi) = (zi − zi−1) − (zi−1 − zi−2)

• Second order differencing matrix

D =




1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1




• Higher orders are straightforward

• In R: D = diff(diag(m), diff = d)
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Plot from PSPlay discrete program
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Whittaker smoothing; order = 3, log10(lambda) = 4.4
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The effects of higher orders

• Smoother curves

• Polynomial limits for large λ

• Degree of interpolation

• Degree of extrapolation

• Conservation of moments (will be explained later)

• (Software demo: PSPlay discrete)

Channel Network Conference 2015 Part 1 13



Limits

• Consider large λ in Q = ||y − z||2 + λ||Dz||2

• Penalty is overwhelming, hence essentially Dz = ∆z = 0

• This is the case if zi − zi−1 = 0, hence zi = c, a constant

• Generally: ∆dz = 0 if z is order d − 1 polynomial in i

• Linear limit when d = 2, quadratic when d = 3, ...

• It is also the least squares polynomial
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Interpolation and extrapolation

• Let yi be missing for some i

• Use weights wi (0 if missing, 1 if not)

• Fill in arbitrary values (say 0) for missing y

• Minimize, with W = diag(w)

Q = (y − z)′W(y − z) + λ||Dz||2

• Trivial changes: ẑ = (W + λD′D)−1Wy
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Interpolation and extrapolation, continued

• Interpolation is by polynomial in i

• Order 2d − 1

• Extrapolation: introduce “missing” data at the end(s)

• Extrapolation is by polynomial in i

• Order d − 1

• (Software demo: PSPlay interpolation)
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Plot from PSPlay interpolate program
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Channel Network Conference 2015 Part 1 17



Non-normal data

• We measured fidelity by the sum of squares

• This is reasonable for (approximately) normal data

• Which means: trend plus normal disturbances

• How will we handle counts?

• Or binomial data?

• Use penalized (log-)likelihood

• Along the lines of the generalized linear model (GLM)
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Smoothing of counts

• Given: a series y of counts

• We model a smooth linear predictor η

• Assumption: yi ∼ Pois(µi), with ηi = logµi

• The roughness penalty is the same

• But fidelity measured by deviance (-2 LL):

Q = 2
∑

i

(µi − yiηi) + λ
∑

i

(∆dηi)2
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Linearization and weighted least squares

• Derivatives of Q give penalized likelihood equations

λD′Dz = y − eη = y − µ

• Non-linear, but the Taylor approximation gives

(M̃ + λD′D)η = y − µ̃ + M̃η̃

• Current approximation η̃, and M̃ = diag(µ̃)

• Repeat until (quick) convergence

• Start from η̃ = log(y + 1)
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Example: coal mining accidents
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A useful application: histogram smoothing

• The “Poisson smoother” is ideal for histograms

• Bins can be very narrow

• Still a smooth realistic (discretized) density estimate

• Conservation of moments

• ∑i yixk
i =
∑

i µ̂ixk
i for integer k < d (bin midpoints in x)

• With d = 3, mean and variance don’t change

• Whatever the amount of smoothing

• (Software demo: PSPlay histogram)
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Plot from PSPlay histogram program
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Smoothing old Faithful
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Respect the boundaries

• Extend the histogram with enough zero counts

• But some data are inherently bounded

• Non-zero, or between 0 and 1

• Then you should limit the domain accordingly

• Otherwise you will smooth in the “no go” area

• Example: suicide treatment data

• Inherently non-negative durations
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Smoothing the suicide treatment data

Treatment spells (d)
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Binomial data

• Given: sample sizes s, “successes” y

• Smooth curve wanted for p, probability of succes

• We model the logit:

z = log
p

1 − p
; p =

ez

1 + ez =
1

1 + e−z

• Linearization as for counts

• Start from logit of (y + 1)/(s + 2)

• No surprises, details skipped
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Example: hepatitis B prevalence (Keiding)
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Optimal smoothing

• We can smooth almost anything (in GLM sense)

• How much should we smooth?

• Let the data decide

• Cross-validation, AIC (BIC)

• Essentially we measure prediction performance

• On new or left-out data
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Leave-one-out cross-validation

• Leave out yi (make wi zero)

• Interpolate a value for it: ŷ−i

• Do this for all observations in turn

• You get a series of “predictions”

• How good are they?

• Use CV =
∑

(yi − ŷ−i)2, or RMSCV =
√

CV/m

• Search for λ that minimizes CV
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Speeding up the computations

• LOO CV looks expensive (repeat smoothing m times)

• It is, if done without care

• But there is a better way

• We have ŷ = (W + λD′D)−1Wy = Hy

• We call H the hat matrix; property: hi j = ∂ŷi/∂y j

• One can prove: yi − ŷ−i = (yi − ŷi)/(1 − hii)

• Smooth once (for each λ), compute all ŷ−i at the same time
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Akaike’s information criterion

• Definition: AIC = Deviance + 2ED = −2LL + 2ED

• Here ED is the effective model dimension

• Useful definition:

ED =
∑

i

∂µ̂i/∂yi =
∑

i

hii = tr(H)

• This defines a hat matrix for generalized linear smoothing

• Vary λ on a grid to find minimum of AIC

• Minimization routine can be used too

• But it is useful to see the curve of AIC vs. logλ
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A convincing example: Old Faithful
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A worrying example: a wood surface
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What went wrong?

• The (silent) assumption: trend plus independent noise

• Here the noise is correlated

• LOO CV means: best prediction of left-out data

• Light smoothing gives better predictions

• That is not what we had in mind

• The smooth trend is not automatically detected
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Two solutions

• The elegant solution: model correlated noise

• This has been done (Currie and Durban)

• A lot of extra work

• Simple alternative: take every fifth (tenth) observation

• Thinning observations breaks correlation

• Scale final λ by f 2d

• If f is the thinning factor

Channel Network Conference 2015 Part 1 36

Thinning to break correlation
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Similar problems with histograms

• If counts are a time series, AIC can fail

• Again serial correlation is the cause

• Other histograms show digit preference

• People read an analog scale or estimate a number

• Examples: blood pressure in mm (mostly even numbers)

• Age, or birth date: rounding to multiples of five.

• Solution: model digit preference (non-trivial)

• Or use your carpenter’s eye
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Circular smoothing

• Sometimes the data are circular

• Because we look at one period (or more)

• Then we wish that both ends connect smoothly

• Modify difference matrix with extra row(s), like

D =




−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
1 0 0 0 −1
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Illustration of circular smoothing
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Designer penalties

• By now you should have got the message

• The penalty pushes the result in the desired direction

• For special cases special penalties may be needed

• Example 1: a non-negative impulse response

• Example 2: harmonic smoothing

• Example 3: monotone smoothing
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Impulse response

• Consider special “data”

• All zeros, but one 1 (an impulse)

• The result of smoothing we call the impulse response

• It shows how data get “smeared our”

• For d = 2, it has negative side lobes

• This might not be desirable

• Solution: use penalty λ2||D2z||2 + 2λ||D1z||2

• Here D1 (D2) forms first (second) differences
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Illustration of positive impulse response
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Harmonic smoothing

• Assume periodic data, period p

• Wanted: smooth limit that approaches (co)sine

• Solution: a specialized penalty

R =
∑

i

(zi − 2φzi−1 + zi−2)2

• Where φ = cos(2π/p)
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Illustration of harmonic smoothing
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Varying penalties

• Our penalties had the same weight everywhere

• But we can change that:

R = λ
∑

i

vi(∆dzi)2

• Or, with V = diag(v), R = z′D′VDz

• New problem: how to choose v?

• Simple choice: vi = exp(γi)

• Optimize λ and γ
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Swept sine, constant penalty
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Swept sine, exponentially varying penalty
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Asymmetric penalties and monotone smoothing

• Sometimes we want a smooth increasing result

• Smoothing alone does not guarantee a monotone shape

• We need a little help

• Additional asymmetric penalty P = κ
∑

i vi(zi − zi−1)2

• With vi = 1 if zi < zi−1 and vi = 0 otherwise

• The penalty only works where monotonicity is violated

• With large κ we get the desired result

• This idea also works for convex smoothing

Channel Network Conference 2015 Part 1 49



Example of monotone smoothing
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Monotone fit of Hepatitis B data, lambda = 1, kappa = 1e6
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Wrap-up

• The discrete smoother is simple and powerful

• It can be used for normal and non-normal data

• Penalty pushes solution in desired direction

• Penalty fills gaps in the data

• Desirable limits: polynomial or (co)sine

• “Designer penalties” open up new terrain

• Data have to be equally spaced (but gaps are allowed)

• Next session: the real thing, combination with B-splines
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Part 2

The splendor of splines
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Basis functions for polynomial curve fit

• Regression model µ = Xα

• Columns of matrix X: basis functions. Polynomial basis

Cubic polynomial basis
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Basis functions scaled and added

Weighted sum of cubic polynomial basis
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The motorcycle data

• Simulated crash experiment, a clasic in smoothing

• Acceleration of motorcycle helmets measured
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Polynomial fit to motorcycle data

• High degree (here 9) needed for decent curve fit

• Bad numerical condition (use orthogonal polynomials)

0 10 20 30 40 50 60
−150

−100

−50

0

50

100
Motorcycle helmet data, polynomial of degree 9

Time [ms]

Ac
ce

le
ra

tio
n

Channel Network Conference 2015 Part 2 5



Sensitivity to data changes

• Longer left part (near zero)

• Notice the wiggles, also at the right
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The trouble with polynomials

• High degree (10 or more) may be needed

• Basis functions (powers of x) are global

• Moving one end (vertically) moves the other end too

• Good fit at one end spoils it at the other end

• Unexpected, but unavoidable, wiggles

• The higher the degree the more sensitive

• Polynomials are not a great choice

• We switch to B-splines
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One linear B-spline

• Two pieces, each a straight line, everything else zero

• Nicely connected at knots (t1 to t3) same value

• Slope jumps at knots
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One quadratic B-spline

• Three pieces, each a quadratic segment, rest zero

• Nicely connected at knots (t1 to t4): same values and slopes

• Shape similar to Gaussian
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One cubic B-spline

• Four pieces, each a cubic segment, rest zero

• At knots (t1 to t5): same values, first & second derivatives

• Shape more similar to Gaussian
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A set of cubic B-splines
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B-spline basis

• Basis matrix B

• Columns are B-splines




B1(x1) B2(x1) B3(x1) . . . Bn(x1)
B1(x2) B2(x2) B3(x2) . . . Bn(x2)
... ... ... ... ...
B1(xm) B2(xm) B3(xm) . . . Bn(xm)




• In each row only a few non-zero elements (degree plus one)

• Only a few basis functions contribute to µi =
∑

bi jα j = B′i•α

• (Software demo: PSPlay bsplines)
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Plot from PSPlay bsplines program
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B-splines fit to motorcycle data
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How to compute B-splines

• You can work from first principles

• Compute parameters of the polynomial segments

• Nine (3 times 3) coefficients, 8 constraints, height arbitrary

• Easier: recursive formula De Boor

• Even more easy: differences of truncated power functions
(TPF)

• TPF: f (x|t, p) = (x − t)p
+ = (x − t)pI(x > t)

• Power function when x > t, otherwise 0

• Avoids bad numerical condition of TPF (De Boor)
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B-splines and truncated power functions 1
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B-splines and truncated power functions 2
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B-spline summary

• B-splines are local functions, look like Gaussian

• B-splines are columns of basis matrix B

• Scaling and summing gives fitted values: µ = Bα

• The knots determine the B-spline basis

• Polynomial pieces make up B-splines, join at knots

• General patterns of knots are possible

• But we only consider equal spacing

• Number of knots determines width and number of B-splines
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P-splines on one slide

• Do regression on (cubic) B-splines

• Use equally spaced knots

• Take a large number of them (10, 20, 50)

• Put a difference penalty (order 2 or 3) on the coefficients

• Tune smoothness with λ (penalty weight)

• Don’t try to optimize the number of B-splines

• Relatively small system of equations (10, 20, 50)

• Arbitrary distribution of x allowed
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Technical details of P-splines

• Minimize (with basis B)

Q = ||y − Bα||2 + λ||Dα||2

• Explicit solution:

α̂ = (B′B + λD′D)−1B′y

• Hat matrix H = (B′B + λD′D)−1B′

• For a nice curve, compute B∗ on nice grid x∗

• Plot B∗α̂ vs x∗
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Properties of P-splines

• Penalty
∑

j(∆dα j)2

• Limit for strong smoothing is a polynomial of degree d − 1

• Interpolation: polynomial of degree 2d − 1

• Extrapolation: polynomial of degree d − 1

• Conservation of moments of degree up to d − 1

• Many more B-splines then observations allowed

• The penalty does the work!

• (Software demo: PSPlay psplines)
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Motorcycle helmet data
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Optimal P-spline fit based on CVSEP
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Standard errors

• Sandwich estimator

var(ŷ) = var(Hy)

= H

σ2I︷︸︸︷
var(y) H′

≈ σ2 B(B′B + λD′dDd)−1B′︸                   ︷︷                   ︸
H

B(B′B + λD′dDd)−1B′

• Use sqrt of diagonal, α̂ approx. normal, ŷ ± 2se(ŷ)

• Again, effective model dimension: tr(H)

• Variance estimate

σ̂2 =
|y − ŷ|2

m − tr(H)
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Optimal P-spline fit with twice se bands
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Generalized linear smoothing

• It is just like a GLM (generalized linear model)

• With the penalty sneaked in

• Poisson example for counts y

• Linear predictor η = Bα, expectations µ = eη

• Assumption yi ∼ Pois(µi) (independent)

• From penalized Poisson log-likelihood follows iteration with

(B′M̃B + λD′D)α = B′(y − µ̃ + M̃Bα̃)

• Here M = diag(µ)
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Alternative interpretations of penalties

• Consider penalized least squares : minimize

Q = ||y − Bα||2 + λ||Dα||2

• That penalty is rather useful

• But it seems to come out of the blue

• Can we connect it to established models?

• Yes: Bayes, or mixed models
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Introducing variances

• Rewrite the penalized least squares goal:

Q =
||y − Bα||2

σ2 +
||Dα||2
τ2

• Variance σ2 of noise e in y = Bα + e

• Variance τ2 of contrast Dα

• First term: log of density of y, conditional on α

• Second term: log of (prior) density of Dα

• So λ is a ratio of variances: λ = σ2/τ2
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Bayesian simulation

• We look for posterior distributions of α, σ2, τ2

• Use Gibbs sampling

• “Draw” α conditional on σ2 and τ2

• “Draw” σ2 and τ2, conditional on α

• These are relatively simple subproblems

• Repeat many times, summarize results
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Sketch of Bayesian P-splines MCMC steps

# Prepare some useful summaries

BB = t(B) %*% B; By = t(B) %*% y; yy = t(y) %*% y; P = t(D) %*% D

# Run a Markov chain (loop not shown):

# Update coefficients

U = BB / sig2 + P / tau2

Ch = chol(U)

a0 = solve(Ch, solve(t(Ch), By)) / sig2;

a = solve(Ch, rnorm(length(a0))) + a0;

# Update error variance

r2 = yy - 2 * t(a) %*% By + t(a) %*% BB %*% a;

sig2 = as.single(r2 / rchisq(1, m));

# Update roughness variance

r = D %*% a;

tau2 = as.single(t(r) %*% r / rchisq(1, nb - 2));
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Example of Bayesian P-splines
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Pros and cons of Bayesian P-splines

• You fit P-splines thousand of times: much work

• But all uncertainties are quantified

• This not the case when optimizing AIC, CV

• Theory applies to non-normal smoothing too

• But simulations (of α) are much harder

• Metropolis-Hastings: acceptance rates need tuning

• More on this: Lang et al.: papers, program BayesX

• More modern tools: Langevin sampler, INLA
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Mixed model

• See penalty as log of “mixing” distribution of Dα

• Mixed model software is good at estimating variances

• Dα has singular distribution, rewrite the model

• Introduce “fixed” part X and “random” part Z

• y = Bα = Xα + Za, with Z = BD′(DD′)−1

• And X containing powers of x up to d − 1

• Now a well behaved: independent components
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Mixed model for P-splines in R

# Based on work by Matt Wand

# Compute fixed (X) and mixed (Z) basis

B = bbase(x, 0, 1, 10, 3)

n = dim(B)[2]

d = 2;

D = diff(diag(n), differences = d)

Q = solve(D %*% t(D), D);

X = outer(x, 0:(d - 1), ’ˆ’);

Z = B %*% t(Q)

# Fit mixed model

lmf = lme(y ˜ X - 1, random = pdIdent(˜ Z - 1))

beta.fix <- lmf$coef$fixed

beta.mix <- unlist(lmf$coef$random)
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Example of P-spline fit with mixed model
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EM-type algorithm for P-spline mixed model

• Deviance

−2l = m log σ + n log τ + ||y − Bα||2/σ2 + ||Dα||2/τ2

• ML solution (λ = σ2/τ2)

(B′B + λD′D)α̂ = B′y

• One can prove (ED is effective dimension):

E(|y − Bα̂|2) = (m − ED)σ2; E(|Dα̂|2) = EDτ2

• Use these to estimate σ̂2 and τ̂2 from fit

• Refit with λ = σ2/τ2, repeat
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Example of P-spline fit with EM
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Handling a penalty by data augmentation

Q = ||y − Bα||2 + λ||Dα||2

• Solve linear system

(B′B + λD′D)α = B′y

• Equivalent: regression with augmented data:

B+ =

[
B√
λD

]
; y+ =

[
y
0

]
;
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P-splines with L1 (P1-splines)

• L1 norm: sum of absolute values

• L1 regression on B-spline basis B(x), with L1 difference
penalty

Q = |y − Bα| + λ|Dα|

• Equivalent data augmentation:

B+ =

[
B
λD

]
; y+ =

[
y
0

]
;

• Solve with linear programming

• Use l1fit() or rq() (package quantreg) in R
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P1-splines are robust
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Generalized additive models

• One-dimensional smooth model: η = f (x)

• Two-dimensional smooth model: η = f (x1, x2)

• General f : any interaction between x1 and x2 allowed

• We want to avoid two-dimensional smoothing

• Generalized additive model: η = f1(x1) + f2(x2)

• Both f1 and f2 smooth (Hastie and Tibshirani, 1990)

• Higher dimensions straightforward
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The old way: backfitting for GAM

• Assume linear model: E(y) = µ = f1(x1) + f2(x2)

• Assume: approximations f̃1 and f̃2 available

• Compute partial residuals r1 = y − f̃2(x2)

• Smooth scatterplot of (x1, r1) to get better f̃1

• Compute partial residuals r2 = y − f̃1(x1)

• Smooth scatterplot of (x2, r2) to get better f̃2

• Repeat to convergence
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More on backfitting

• Start with f̃1 = 0 and f̃2 = 0

• Generalized residuals and weights for non-normal data:

• Any smoother can be used

• Convergence can be proved, but may take many iterations

• Convergence criteria should be strict
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PGAM: GAM with P-splines

• Use B-splines: η = f1(x1) + f2(x2) = B1α1 + B2α2

• Combine B1 and B2 to matrix, α1 and α2 to vector:

η = [B1 : B2]
[
α1

α2

]
= B∗α∗

• Difference penalties on α1, α2, in block-diagonal matrix

• Penalized GLM as before: no backfitting
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P-GAM fitting

• Maximize

l∗ = l(α; B, y) − 1
2
λ1|Dd1α1|2 − 1

2
λ2|Dd2α2|2

• Iterative solution:

α̂t+1 = (B′ŴtB + P)−1B′Ŵtẑ?t

where

P =

[
λ1D′d1Dd1 0

0 λ2D′d2Dd2

]
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PGAM advantages

• No backfitting, direct solution

• Fast computation

• Equations of moderate size, compact result (α∗)

• Explicit computation of hat matrix:

• Easy to compute CV, ED, AIC

• Easy standard errors

• No iterations, no convergence criteria to set

• Implemented in Simon Wood’s mgcv package
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Features of P-spline GAMs

• ED = trace(Ĥ) = trace(B(B′ŴB + P)−1B′Ŵ)

• AIC = deviance(y; α̂) + 2 trace(Ĥ)

• Standard error of jth smooth

B j(B′ŴB + P)−1B′ŴB(B′ŴB + P)−1B′j

• GLM diagnostics accessible

• Easy combination with additional linear regressors/factors

• Example: [B1 : B2 : X] (no penalty on X coefficients)
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Two-dimensional smoothing with P-splines

• Use tensor product B-splines: T jk(x, y) = B j(x)B̆k(y)

• Equally spaced knots on 2D grid

• Matrix of coefficients A = [α jk]

• Difference penalties on coefficients

• Penalties on rows/columns of A
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Surface building block
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Egg carton: portion of tensor product basis (n × n̆)
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Implementation of the basis

• Model contains matrix of coefficients A

• Transform to vector: α = vec(A)

• Kronecker product of bases

T = B1 ⊗ B2

• T is of dimension m × (nn̆)

Channel Network Conference 2015 Part 2 52

Two-dimensional penalized estimation

• Objective function

QP = RSS + Row Penalty + Column Penalty

= RSS + λ1

n∑

j=1

A j•D′dDdA′j• + λ2

n̆∑

k=1

A′•kD
′
d̆
Dd̆A•k

= |z − Tα|2 + λ1|P1α|2 + λ2|P2α|2.

• Penalize rows of A with Dd

• Penalize columns of A with Dd̆

• Number of equations is nn̆
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Details of row and column penalties

• Must also carefully arrange (“stack”) penalties

• Block diagonal to break (e.g. row to row) linkages:

• P1 = D ⊗ In̆

• P2 = In ⊗D
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Examples of tensor products surfaces
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The ethanol data

• Nitrogen oxides in motor exhaust: NOx (z)

• Compression ratio, C (x), equivalence ratio, E (y)
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PGAM fit for ethanol data
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PGAM components for ethanol data
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2D smoothing of ethanol data

• Tensor products of cubic B-splines

• Dimension: 64 (8 by 8)

• Fit computed on 400 points

• Residuals (SD) reduced to 60%, compared to GAM
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Tensor P-spline fit to ethanol data
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Another 2D application

• Printed circuit board

• Clamping causes warping (approx. 0.5 mm)

• Laser inspection of deformation

• Input: 1127 observations

• Cubic P-spline tensor products: 13 by 13

• Interpolation at 1600 points
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Printed circuit board data
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Higher dimensions

• Triple (or higher) tensor products possible

• Difference penalty for each dimension

• Many equations: n3 (n4)

• Reduce number of B-splines

• Data generally sparse in more dimensions

• Special algorithm for (possibly incomplete) data on grids

• Speed-up 10 to 1000 times
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Wrap-up

• P-splines are useful

• They are beautiful too

• People like them: many citations

• The penalties form the skeleton

• The B-splines put the flesh on it

• See back of handout for further reading
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About software

• We (PE and BD) did not write a package

• Too busy exploring new applications ;-)

• Some scripts on stat.lsu.edu/bmarx

• Simon Wood’s mgcv package offers a lot

• I’m always willing to help

• And to share my software

• p.eilers@erasmusmc.nl
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Rodrguez-Álvarez, M.X; Lee, D.-J.; Kneib, T.; Durbán, M and Eilers, P. (2014)
Fast smoothing parameter separation in multidimensional general-
ized P-splines: the SAP algorithm. To appear in Statistics and Com-
puting.

Ruppert, D. (2002) Selecting the number of knots for penalized splines.
Journal of Computational and Graphical Statistics 11, 735–757.

Ruppert, D. and Carroll, R.J. (2000) Spatially-Adaptive Penalties for Spline
Fitting, Australian and New Zealand Journal of Statistics 42, 205–223.

Ruppert, D., Wand, M.P., and Carroll, R.J. (2003) Semiparametric Regres-
sion. Cambridge University Press, New York.

Schall, R. (1991) Estimation in generalized linear models with random ef-
fects. Biometrika 78, 719–727.

Verbyla, A.P., Cullis, B.R. and Kenward, M.G. (1999) The analysis of de-
signed experiments and longitudinal data by using smoothing splines.
Applied Statistics 48, 269–300.

Wand, M. (2000) A comparison of regression spline smoothing procedures.
Computational Statistics, 443–462.

Welham S.J., Cullis B.R., Kenward M.G. and Thompson R. (2007) A com-
parison of mixed model splines for curve fitting. Australian and New
Zealand Journal of Statistics 49, 1–23.



Welham, S.J. and Thompson, R. (2009) A note on bimodality in the log-
likelihood function for penalized spline mixed models. Computa-
tional Statistics and Data Analysis 53, 920–931.

Whittaker, E.T. (1923) On a new method of graduation. Proceedings of the
Edinburgh Mathematical Society 41, 63–75.

Wood, S.N. (2000) Modelling and smoothing parameter estimation with
multiple quadratic penalties. Journal of the Royal Statistical Society
B 62, 413–428.

Wood, S.N. (2006) Generalized Additive Models. An Introduction with R.
Chapman and Hall.

Xiao, L.: Li, Y. and Ruppert, D. (2013) Fast Bivariate P-splines: the Sand-
wich Smoother, JRSS-B 75, 577–599.

Yee, T. and Wild, C.J. (1996) Vector Generalized Additive Models. Journal
of the Royal Statistical Society B 58, 481–493.



.



Consumer score card for smoothers

This score card is reproduced from our paper in Statistical Science (1996).

Aspect KS KSB LR LRB SS SSB RSF RSA PS
Speed of fitting — + — + — + + + +
Speed of optimization — + — + — + — — +
Boundary effects — — + + + + + + +
Sparse designs — — — — + + — + +
Semi parametric models — — — — + — + + +
Non-normal data + + + + + + + + +
Easy implementation + — + — + — + — +
Parametric limit — — + + + + + + +
Specialized limits — — — — + + — — +
Variance inflation — — + + + + + + +
Adaptive flexibility possible + + + + + + — + +
Adaptive flexibility available — — — — — — — + —
Compact result — — — — — — + + +
Conservation of moments — — + + + + + + +
Easy standard errors — — + + — + + + +

Consumer test of smoothing methods. The abbreviations stand for

KS kernel smoother

KSB kernel smoother with binning

LR local regression

LRB local regression with binning

SS smoothing splines

SSB smoothing splines with band solver

RSF regression splines with fixed knots

RSA regression splines with adaptive knots

PS P-splines

The row “Adaptive flexibility available” means that a software implementation
is readily available.


